Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigations of the spectral characteristics of 980-nm InGaAs-GaAs-AlGaAs lasers

Identifieur interne : 001110 ( Russie/Analysis ); précédent : 001109; suivant : 001111

Investigations of the spectral characteristics of 980-nm InGaAs-GaAs-AlGaAs lasers

Auteurs : RBID : Pascal:98-0050341

Descripteurs français

English descriptors

Abstract

Semiconductor quantum-well (QW) lasers at 980 nm exhibit unique spontaneous emission spectra with a periodic envelope of approximately 2∼3-nm wavelength. This phenomenon has been observed in both front facet and side spontaneous emission. The modulation is modeled in terms of coupling between the laser waveguide and the substrate waveguide which is transparent to 980-nm light. Modal gain spectra of the entire waveguide structure including substrate are calculated numerically by a transfer matrix method. The gain spectra in the active stripe and loss spectra in the unpumped QW exhibit modulation. This results in modulation of the emission spectra. An analytical approach based on coupled mode equations is developed to explain and clarify the results of the numerical modeling. The interesting case of a coupling length that is small by comparison with the gain/loss length is examined in detail. Front facet and side spontaneous emission spectra calculated using the modal gain spectra are in good agreement with the measured spectra. The results presented make it possible to interpret the unique modal characteristics of 980-nm lasers quantitatively and relate them to the physical structural parameters.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:98-0050341

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Investigations of the spectral characteristics of 980-nm InGaAs-GaAs-AlGaAs lasers</title>
<author>
<name sortKey="Avrutsky, I A" uniqKey="Avrutsky I">I. A. Avrutsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Optoelectronics Laboratory, Electrical and Computer Engineering Department, University of Toronto</s1>
<s2>Toronto, Ont., M5S 3G4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ont., M5S 3G4</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Fiber Optics Research Center, General Physics Institute, Russian Academy of Sciences</s1>
<s2>Moscow, 117942</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>Moscow, 117942</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gordon, R" uniqKey="Gordon R">R. Gordon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Optoelectronics Laboratory, Electrical and Computer Engineering Department, University of Toronto</s1>
<s2>Toronto, Ont., M5S 3G4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ont., M5S 3G4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clayton, R" uniqKey="Clayton R">R. Clayton</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Advanced Technology Labs, Nortel Technology</s1>
<s2>Ottawa, Ont., K1Y 4H7</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Ottawa, Ont., K1Y 4H7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, J M" uniqKey="Xu J">J. M. Xu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Optoelectronics Laboratory, Electrical and Computer Engineering Department, University of Toronto</s1>
<s2>Toronto, Ont., M5S 3G4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Toronto, Ont., M5S 3G4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">98-0050341</idno>
<date when="1997">1997</date>
<idno type="stanalyst">PASCAL 98-0050341 INIST</idno>
<idno type="RBID">Pascal:98-0050341</idno>
<idno type="wicri:Area/Main/Corpus">017C52</idno>
<idno type="wicri:Area/Main/Repository">018B88</idno>
<idno type="wicri:Area/Russie/Extraction">001110</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9197</idno>
<title level="j" type="abbreviated">IEEE j. quantum electron.</title>
<title level="j" type="main">IEEE journal of quantum electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium arsenides</term>
<term>Binary compounds</term>
<term>Coupled mode analysis</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Indium arsenides</term>
<term>Quantum wells</term>
<term>Semiconductor lasers</term>
<term>Spontaneous emission</term>
<term>Ternary compounds</term>
<term>Theoretical study</term>
<term>Waveguides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>4255P</term>
<term>4260L</term>
<term>Etude expérimentale</term>
<term>Etude théorique</term>
<term>Laser semiconducteur</term>
<term>Puits quantique</term>
<term>Guide onde</term>
<term>Emission spontanée</term>
<term>Composé binaire</term>
<term>Composé ternaire</term>
<term>Gallium arséniure</term>
<term>Indium arséniure</term>
<term>Aluminium arséniure</term>
<term>Analyse mode couplé</term>
<term>InGaAs</term>
<term>As Ga In</term>
<term>GaAs</term>
<term>As Ga</term>
<term>AlGaAs</term>
<term>Al As Ga</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Semiconductor quantum-well (QW) lasers at 980 nm exhibit unique spontaneous emission spectra with a periodic envelope of approximately 2∼3-nm wavelength. This phenomenon has been observed in both front facet and side spontaneous emission. The modulation is modeled in terms of coupling between the laser waveguide and the substrate waveguide which is transparent to 980-nm light. Modal gain spectra of the entire waveguide structure including substrate are calculated numerically by a transfer matrix method. The gain spectra in the active stripe and loss spectra in the unpumped QW exhibit modulation. This results in modulation of the emission spectra. An analytical approach based on coupled mode equations is developed to explain and clarify the results of the numerical modeling. The interesting case of a coupling length that is small by comparison with the gain/loss length is examined in detail. Front facet and side spontaneous emission spectra calculated using the modal gain spectra are in good agreement with the measured spectra. The results presented make it possible to interpret the unique modal characteristics of 980-nm lasers quantitatively and relate them to the physical structural parameters.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9197</s0>
</fA01>
<fA02 i1="01">
<s0>IEJQA7</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE j. quantum electron.</s0>
</fA03>
<fA05>
<s2>33</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Investigations of the spectral characteristics of 980-nm InGaAs-GaAs-AlGaAs lasers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AVRUTSKY (I. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GORDON (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CLAYTON (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>XU (J. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Optoelectronics Laboratory, Electrical and Computer Engineering Department, University of Toronto</s1>
<s2>Toronto, Ont., M5S 3G4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Fiber Optics Research Center, General Physics Institute, Russian Academy of Sciences</s1>
<s2>Moscow, 117942</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Advanced Technology Labs, Nortel Technology</s1>
<s2>Ottawa, Ont., K1Y 4H7</s2>
<s3>CAN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>1801-1809</s1>
</fA20>
<fA21>
<s1>1997</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222K</s2>
<s5>354000069992300230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1998 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>98-0050341</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i2="1">
<s0>IEEE journal of quantum electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Semiconductor quantum-well (QW) lasers at 980 nm exhibit unique spontaneous emission spectra with a periodic envelope of approximately 2∼3-nm wavelength. This phenomenon has been observed in both front facet and side spontaneous emission. The modulation is modeled in terms of coupling between the laser waveguide and the substrate waveguide which is transparent to 980-nm light. Modal gain spectra of the entire waveguide structure including substrate are calculated numerically by a transfer matrix method. The gain spectra in the active stripe and loss spectra in the unpumped QW exhibit modulation. This results in modulation of the emission spectra. An analytical approach based on coupled mode equations is developed to explain and clarify the results of the numerical modeling. The interesting case of a coupling length that is small by comparison with the gain/loss length is examined in detail. Front facet and side spontaneous emission spectra calculated using the modal gain spectra are in good agreement with the measured spectra. The results presented make it possible to interpret the unique modal characteristics of 980-nm lasers quantitatively and relate them to the physical structural parameters.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B60L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>4260L</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>45</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>45</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>46</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>47</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>47</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>48</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>48</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Guide onde</s0>
<s5>49</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Waveguides</s0>
<s5>49</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Emission spontanée</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Spontaneous emission</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>52</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>53</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>54</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>54</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>55</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>55</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Aluminium arséniure</s0>
<s2>NK</s2>
<s5>56</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>56</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Analyse mode couplé</s0>
<s5>62</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Coupled mode analysis</s0>
<s5>62</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>AlGaAs</s0>
<s4>INC</s4>
<s5>88</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Al As Ga</s0>
<s4>INC</s4>
<s5>89</s5>
</fC03>
<fN21>
<s1>026</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001110 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 001110 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:98-0050341
   |texte=   Investigations of the spectral characteristics of 980-nm InGaAs-GaAs-AlGaAs lasers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024